Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 117(1): 143-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523176

RESUMO

Previously, we reported that RelA protein facilitates Hfq-mediated mRNA-sRNA regulation by binding sRNAs carrying a Shine-Dalgarno-like GGAG sequence. In turn, sRNA-Hfq monomers are stabilized, enabling the attachment of more Hfq subunits to form a functional hexamer. Here, using CLIP-seq, we present a global analysis of RelA-bound RNAs showing that RelA interacts with sRNAs as well as with mRNAs carrying a GGAG motif. RelA binding of mRNAs carrying GGAG at position -7 relative to the initiation codon (AUG) inhibits translation by interfering with the binding of 30S ribosomes. The extent of inhibition depends on the distance of GGAG relative to the AUG, as shortening the spacing between GGAG and AUG abrogates RelA-mediated inhibition. Interestingly, RelA binding of target mRNAs carrying GGAG in the coding sequence or close to AUG facilitates target gene regulation by sRNA partners that lack GGAG. However, translation inhibition caused by RelA binding of mRNAs carrying GGAG at position -7 relative to the AUG renders sRNA-mRNA basepairing regulation ineffective. Our study indicates that by binding RNAs carrying GGAG the ribosome-associated RelA protein inhibits translation of specific newly synthesized incoming mRNAs or enables basepairing regulation by their respective sRNA partners, thereby introducing a new regulatory concept for the bacterial response.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinase/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Pareamento de Bases , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinase/genética , Motivos de Nucleotídeos , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
2.
Microbiol Spectr ; 9(3): e0205721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935430

RESUMO

The alarmone ppGpp plays an important role in the survival of bacteria by triggering the stringent response when exposed to environmental stress. Although Xanthomonas campestris pv. campestris (Xcc), which causes black rot disease in crucifers, is a representative species of Gram-negative phytopathogenic bacteria, relatively little is known regarding the factors influencing the stringent response in this species. However, previous studies in other Gram-negative bacteria have indicated that RelA and SpoT play a critical role in ppGpp synthesis. The current study found that these proteins also had an important role in Xcc, with a ΔrelAΔspoT double mutant being unable to produce ppGpp, resulting in changes to phenotype including reduced production of exopolysaccharides (EPS), exoenzymes, and biofilm, as well the loss of swarming motility and pathogenicity. The ppGpp-deficient mutant also exhibited greater sensitivity to environment stress, being almost incapable of growth on modified minimal medium (mMM) and having a much greater propensity to enter the viable but nonculturable (VBNC) state in response to oligotrophic conditions (0.85% NaCl). These findings much advance our understanding of the role of ppGpp in the biology of Xcc and could have important implications for more effective management of this important pathogen. IMPORTANCE Xanthomonas campestris pv. campestris (Xcc) is a typical seedborne phytopathogenic bacterium that causes large economic losses worldwide, and this is the first original research article to investigate the role of ppGpp in this important species. Here, we revealed the function of RelA and SpoT in ppGpp production, physiology, pathogenicity, and stress resistance in Xcc. Most intriguingly, we found that ppGpp levels and downstream ppGpp-dependent phenotypes were mediated predominantly by SpoT, with RelA having only a supplementary role. Taken together, the results of the current study provide new insight into the role of ppGpp in the biology of Xcc, which could also have important implications for the role of ppGpp in the survival and pathogenicity of other pathogenic bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , GTP Pirofosfoquinase/metabolismo , Guanosina Tetrafosfato/biossíntese , Doenças das Plantas/microbiologia , Pirofosfatases/metabolismo , Xanthomonas campestris/crescimento & desenvolvimento , Xanthomonas campestris/patogenicidade , Proteínas de Bactérias/genética , GTP Pirofosfoquinase/genética , Pirofosfatases/genética , Raphanus/microbiologia , Virulência , Xanthomonas campestris/enzimologia , Xanthomonas campestris/genética
3.
Mol Cell ; 81(16): 3310-3322.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416138

RESUMO

Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product-the alarmone nucleotide (p)ppGpp-through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.


Assuntos
Regulação Alostérica/genética , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinase/genética , Guanosina Pentafosfato/genética , Pirofosfatases/genética , Aminoácidos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Domínio Catalítico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/genética , Ribossomos/genética , Ribossomos/metabolismo , Inanição/genética , Inanição/metabolismo
4.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323689

RESUMO

Bacteria regulate their metabolism to adapt and survive adverse conditions, in particular to stressful downshifts in nutrient availability. These shifts trigger the so-called stringent response, coordinated by the signaling molecules guanosine tetra and pentaphosphate collectively referred to as (p)ppGpp. In Escherichia coli, accumulation of theses alarmones depends on the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT. A tight regulation of these intracellular activities is therefore crucial to rapidly adjust the (p)ppGpp levels in response to environmental stresses but also to avoid toxic consequences of (p)ppGpp over-accumulation. In this study, we show that the small protein NirD restrains RelA-dependent accumulation of (p)ppGpp and can inhibit the stringent response in E. coli. Mechanistically, our in vivo and in vitro studies reveal that NirD directly binds the catalytic domains of RelA to balance (p)ppGpp accumulation. Finally, we show that NirD can control RelA activity by directly inhibiting the rate of (p)ppGpp synthesis.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , GTP Pirofosfoquinase/genética , Nitrito Redutases/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Guanosina Pentafosfato/metabolismo , Nitrito Redutases/metabolismo , Estresse Fisiológico
5.
Commun Biol ; 4(1): 434, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790389

RESUMO

Bacteria synthesize guanosine tetra- and penta phosphate (commonly referred to as (p)ppGpp) in response to environmental stresses. (p)ppGpp reprograms cell physiology and is essential for stress survival, virulence and antibiotic tolerance. Proteins of the RSH superfamily (RelA/SpoT Homologues) are ubiquitously distributed and hydrolyze or synthesize (p)ppGpp. Structural studies have suggested that the shift between hydrolysis and synthesis is governed by conformational antagonism between the two active sites in RSHs. RelA proteins of γ-proteobacteria exclusively synthesize (p)ppGpp and encode an inactive pseudo-hydrolase domain. Escherichia coli RelA synthesizes (p)ppGpp in response to amino acid starvation with cognate uncharged tRNA at the ribosomal A-site, however, mechanistic details to the regulation of the enzymatic activity remain elusive. Here, we show a role of the enzymatically inactive hydrolase domain in modulating the activity of the synthetase domain of RelA. Using mutagenesis screening and functional studies, we identify a loop region (residues 114-130) in the hydrolase domain, which controls the synthetase activity. We show that a synthetase-inactive loop mutant of RelA is not affected for tRNA binding, but binds the ribosome less efficiently than wild type RelA. Our data support the model that the hydrolase domain acts as a molecular switch to regulate the synthetase activity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Guanosina Pentafosfato/biossíntese , Hidrolases/metabolismo , Ligases/metabolismo , Domínios Proteicos
6.
Nat Commun ; 12(1): 2249, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883550

RESUMO

The RNA chaperone Hfq, acting as a hexamer, is a known mediator of post-transcriptional regulation, expediting basepairing between small RNAs (sRNAs) and their target mRNAs. However, the intricate details associated with Hfq-RNA biogenesis are still unclear. Previously, we reported that the stringent response regulator, RelA, is a functional partner of Hfq that facilitates Hfq-mediated sRNA-mRNA regulation in vivo and induces Hfq hexamerization in vitro. Here we show that RelA-mediated Hfq hexamerization requires an initial binding of RNA, preferably sRNA to Hfq monomers. By interacting with a Shine-Dalgarno-like sequence (GGAG) in the sRNA, RelA stabilizes the initially unstable complex of RNA bound-Hfq monomer, enabling the attachment of more Hfq subunits to form a functional hexamer. Overall, our study showing that RNA binding to Hfq monomers is at the heart of RelA-mediated Hfq hexamerization, challenges the previous concept that only Hfq hexamers can bind RNA.


Assuntos
Proteínas de Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinase/química , GTP Pirofosfoquinase/genética , Fator Proteico 1 do Hospedeiro/química , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Deleção de Sequência
7.
Nucleic Acids Res ; 49(1): 444-457, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330919

RESUMO

In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA's CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a 'closed' conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an 'open' conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/biossíntese , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Acilação , Sítio Alostérico , Bacillus subtilis/genética , Domínio Catalítico , GTP Pirofosfoquinase/metabolismo , Hidrólise , Modelos Genéticos , Modelos Moleculares , Conformação Proteica , Processamento Pós-Transcricional do RNA , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
8.
Sci Rep ; 10(1): 6091, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269250

RESUMO

Genetic circuit-based biosensors have emerged as an effective analytical tool in synthetic biology; these biosensors can be applied to high-throughput screening of new biocatalysts and metabolic pathways. Sigma 54 (σ54)-dependent transcription factor (TF) can be a valuable component of these biosensors owing to its intrinsic silent property compared to most of the housekeeping sigma 70 (σ70) TFs. Here, we show that these unique characteristics of σ54-dependent TFs can be used to control the host cell state to be more appropriate for high-throughput screening. The acclimation of cell state was achieved by using guanosine (penta)tetraphosphate ((p)ppGpp)-related genes (relA, spoT) and nutrient conditions, to link the σ54 TF-based reporter expression with the target enzyme activity. By controlling stringent programmed responses and optimizing assay conditions, catalytically improved tyrosine phenol lyase (TPL) enzymes were successfully obtained using a σ54-dependent DmpR as the TF component, demonstrating the practical feasibility of this biosensor. This combinatorial strategy of biosensors using σ factor-dependent TFs will allow for more effective high-throughput enzyme engineering with broad applicability.


Assuntos
Proteínas de Bactérias/genética , Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/métodos , Transativadores/genética , Ativação Transcricional , Tirosina Fenol-Liase/genética , Aclimatação , Técnicas Biossensoriais/métodos , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Pirofosfoquinase/genética , GTP Pirofosfoquinase/metabolismo , Regiões Promotoras Genéticas , Pseudomonas putida , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Tirosina Fenol-Liase/metabolismo
9.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32020910

RESUMO

The nucleotide derivatives (p)ppGpp, comprising ppGpp and pppGpp, are important signalling molecules that control various facets of gene regulation and protein synthesis in Escherichia coli. Their synthesis is catalysed by RelA (in response to amino acid limitation) and by SpoT (in response to the limitation of carbon source or fatty acids). SpoT is also a hydrolase for degradation of both ppGpp and pppGpp, while GppA catalyses the conversion of pppGpp to ppGpp. Here we provide evidence to show that pppGpp exerts heightened toxicity compared to that by ppGpp. Thus, gppA spoT double mutants exhibited lethality under conditions in which the single mutants were viable. The extent of RelA-catalysed (p)ppGpp accumulation in the gppA spoT strain was substantially greater than that in its isogenic gppA+ derivative. The data is interpreted in terms of a model in which toxicity of pppGpp in the gppA spoT mutants is mediated by its activation of RelA so as to result in a vicious cycle of (p)ppGpp synthesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Guanosina Pentafosfato/análise , Guanosina Pentafosfato/biossíntese , Guanosina Tetrafosfato/análise , Guanosina Tetrafosfato/biossíntese , Pirofosfatases/metabolismo , Mutação , Fenótipo , Plasmídeos
10.
Appl Microbiol Biotechnol ; 104(7): 3061-3079, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32009198

RESUMO

Pseudomonas protegens H78 produces multiple secondary metabolites, including antibiotics and iron carriers. The guanosine pentaphosphate or tetraphosphate ((p)ppGpp)-mediated stringent response is utilized by bacteria to survive during nutritional starvation and other stresses. RelA/SpoT homologues are responsible for the biosynthesis and degradation of the alarmone (p)ppGpp. Here, we investigated the global effect of relA/spoT dual deletion on the transcriptomic profiles, physiology, and metabolism of P. protegens H78 grown to mid- to late log phase. Transcriptomic profiling revealed that relA/spoT deletion globally upregulated the expression of genes involved in DNA replication, transcription, and translation; amino acid metabolism; carbohydrate and energy metabolism; ion transport and metabolism; and secretion systems. Bacterial growth was partially increased, while the cell survival rate was significantly reduced by relA/spoT deletion in H78. The utilization of some nutritional elements (C, P, S, and N) was downregulated due to relA/spoT deletion. In contrast, relA/spoT mutation globally inhibited the expression of secondary metabolic gene clusters (plt, phl, prn, ofa, fit, pch, pvd, and has). Correspondingly, antibiotic and iron carrier biosynthesis, iron utilization, and antibiotic resistance were significantly downregulated by the relA/spoT mutation. This work highlights that the (p)ppGpp-mediated stringent response regulatory system plays an important role in inhibiting primary metabolism and activating secondary metabolism in P. protegens.


Assuntos
Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Pseudomonas/metabolismo , Metabolismo Secundário/genética , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Metabolismo Energético/genética , GTP Pirofosfoquinase/genética , GTP Pirofosfoquinase/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana/genética , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pirofosfatases/genética , Pirofosfatases/metabolismo
11.
Amino Acids ; 51(10-12): 1577-1592, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617110

RESUMO

Increased intracellular cysteine poses a potential danger to cells due to the high ability of cysteine to reduce free iron and promote the Fenton reaction. Here, we studied ways to maintain cysteine homeostasis in E. coli cells while inhibiting protein synthesis with valine or chloramphenicol. When growing wild-type bacteria on minimal medium with sulfate, an excess of cysteine resulting from the inhibition of protein synthesis is mainly incorporated into glutathione (up to 90%), which, therefore, can be considered as cysteine buffer. The share of hydrogen sulfide, which is the product of cysteine degradation by cysteine synthase B (CysM), does not exceed 1-3%, the rest falls on free cysteine, exported from cells. As a result, intracellular free cysteine is maintained at a low level (about 0.1 mM). The lack of glutathione in the gshA mutant increases H2S production and excretion of cysteine and leads to a threefold increase in the level of intracellular cysteine in response to valine and chloramphenicol. The relA mutants, exposed to valine, produce more H2S, dramatically accelerate the export of glutathione and accumulate more cysteine in the cytoplasm than their parent, which indicates that the regulatory nucleotide (p)ppGpp is involved in maintaining cysteine homeostasis. Disruption of cysteine homeostasis in gshA and relA mutants increases their sensitivity to peroxide stress.


Assuntos
Cisteína/metabolismo , Escherichia coli/fisiologia , Homeostase , Biossíntese de Proteínas , Cloranfenicol/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Pirofosfoquinase/genética , GTP Pirofosfoquinase/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Homeostase/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Viabilidade Microbiana , Mutação , Estresse Oxidativo , Biossíntese de Proteínas/efeitos dos fármacos , Valina/metabolismo
12.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 8): 561-569, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397328

RESUMO

The stringent response, controlled by (p)ppGpp, enables bacteria to trigger a strong phenotypic resetting that is crucial to cope with adverse environmental changes and is required for stress survival and virulence. In the bacterial cell, (p)ppGpp levels are regulated by the concerted opposing activities of RSH (RelA/SpoT homologue) enzymes that can transfer a pyrophosphate group of ATP to the 3' position of GDP (or GTP) or remove the 3' pyrophosphate moiety from (p)ppGpp. Bifunctional Rel enzymes are notoriously difficult to crystallize owing to poor stability and a propensity for aggregation, usually leading to a loss of biological activity after purification. Here, the production, biochemical analysis and crystallization of the bifunctional catalytic region of the Rel stringent factor from Thermus thermophilus (RelTtNTD) in the resting state and bound to nucleotides are described. RelTt and RelTtNTD are monomers in solution that are stabilized by the binding of Mn2+ and mellitic acid. RelTtNTD crystallizes in space group P4122, with unit-cell parameters a = b = 88.4, c = 182.7 Å, at 4°C and in space group P41212, with unit-cell parameters a = b = 105.7, c = 241.4 Å, at 20°C.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , GTP Pirofosfoquinase/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalização , GTP Pirofosfoquinase/metabolismo , Modelos Moleculares , Conformação Proteica
13.
Mol Microbiol ; 112(4): 1339-1349, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400173

RESUMO

Bacteria undergoing nutrient starvation induce the ubiquitous stringent response, resulting in gross physiological changes that reprograms cell metabolism from fast to slow growth. The stringent response is mediated by the secondary messengers pppGpp and ppGpp collectively referred to as (p)ppGpp or 'alarmone'. In Escherichia coli, two paralogs, RelA and SpoT, synthesize (p)ppGpp. RelA is activated by amino acid starvation, whereas SpoT, which can also degrade (p)ppGpp, responds to fatty acid (FA), carbon and phosphate starvation. Here, we discover that FA starvation leads to rapid activation of RelA and reveal the underlying mechanism. We show that FA starvation leads to depletion of lysine that, in turn, leads to the accumulation of uncharged tRNALys and activation of RelA. SpoT was also activated by FA starvation but to a lower level and with a delayed kinetics. Next, we discovered that pyruvate, a precursor of lysine, is depleted by FA starvation. We also propose a mechanism that explains how FA starvation leads to pyruvate depletion. Together our results raise the possibility that RelA may be a major player under many starvation conditions previously thought to depend principally on SpoT. Interestingly, FA starvation provoked a ~100-fold increase in relA dependent ampicillin tolerance.


Assuntos
Proteínas de Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , GTP Pirofosfoquinase/metabolismo , Ácido Pirúvico/metabolismo , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , GTP Pirofosfoquinase/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Guanosina Tetrafosfato/metabolismo , Ligases/metabolismo , Lisina/metabolismo , Pirofosfatases/metabolismo , RNA de Transferência/metabolismo
14.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331975

RESUMO

Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the ß-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabYIMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. ß-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a ß-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.


Assuntos
Acetiltransferases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/genética , GTP Pirofosfoquinase/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Mutação , Mutações Sintéticas Letais
15.
Cell Microbiol ; 21(8): e13034, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31013389

RESUMO

How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.


Assuntos
Proteínas de Bactérias/genética , Guanosina Pentafosfato/metabolismo , Interações Hospedeiro-Patógeno/genética , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Células CACO-2 , Modelos Animais de Doenças , GTP Pirofosfoquinase/deficiência , GTP Pirofosfoquinase/genética , Regulação Bacteriana da Expressão Gênica , Células HT29 , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/microbiologia , Sobrecarga de Ferro/mortalidade , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Polissacarídeos Bacterianos/deficiência , Pirofosfatases/deficiência , Pirofosfatases/genética , Células RAW 264.7 , Salmonella typhi/crescimento & desenvolvimento , Salmonella typhi/metabolismo , Transdução de Sinais , Baço/metabolismo , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Células THP-1 , Febre Tifoide/metabolismo , Febre Tifoide/mortalidade , Febre Tifoide/patologia , Virulência
16.
Sci Adv ; 5(3): eaav2104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30906866

RESUMO

The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb -deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.


Assuntos
Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/genética , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cristalografia por Raios X , Replicação do DNA/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , GTP Pirofosfoquinase/antagonistas & inibidores , GTP Pirofosfoquinase/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoniazida/química , Isoniazida/farmacologia , Camundongos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/patologia
17.
Microbiol Res ; 220: 32-41, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30744817

RESUMO

The type VI secretion system (T6SS) is a versatile molecular machinery widely distributed in Gram-negative bacteria. The activity of the T6SS is tightly regulated by various mechanisms, including quorum sensing (QS), iron concentration, and transcriptional regulators. Here we demonstrated that the stringent response regulator, RelA, contributes to bacterial resistance to multiple environmental stresses in Yersinia pseudotuberculosis. We also revealed that the stress resistance function of stringent response (SR) was partially mediated by the general stress response T6SS4 system. RelA positively regulates the expression of T6SS4 to combat various stresses in response to nutrition starvation collectively mediated by the RovM and RovA regulators. These findings revealed not only the important role of T6SS4 in SR induced stress resistance, but also a new pathway to regulate T6SS4 expression in response to starvation stress.


Assuntos
Proteínas de Bactérias/metabolismo , GTP Pirofosfoquinase/metabolismo , Ligases/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Yersinia pseudotuberculosis/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Ligases/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Inanição , Estresse Fisiológico , Sistemas de Secreção Tipo VI/genética , Yersinia pseudotuberculosis/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-29903714

RESUMO

In the past 4 years, because of the advent of new cameras, many ribosome structures have been solved by cryoelectron microscopy (cryo-EM) at high, often near-atomic resolution, bringing new mechanistic insights into the processes of translation initiation, peptide elongation, termination, and recycling. Thus, cryo-EM has joined X-ray crystallography as a powerful technique in structural studies of translation. The significance of this new development is that structures of ribosomes in complex with their functional binding partners can now be determined to high resolution in multiple states as they perform their work. The aim of this article is to provide an overview of these new studies and assess the contributions they have made toward an understanding of translation and translational control.


Assuntos
Ribossomos/química , Ribossomos/metabolismo , Animais , Bactérias/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , GTP Pirofosfoquinase/metabolismo , Humanos , Plasmodium falciparum/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Transporte Proteico , RNA de Transferência/metabolismo , Trypanosoma/metabolismo , Leveduras/metabolismo
19.
J Bacteriol ; 201(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420451

RESUMO

To cope with fluctuations in their environment, bacteria have evolved multiple adaptive stress responses. One such response is the nitrogen regulation stress response, which allows bacteria, such as Escherichia coli, to cope with and overcome conditions of nitrogen limitation. This response is directed by the two-component system NtrBC, where NtrC acts as the major transcriptional regulator to activate the expression of genes to mount the response. Recently, my colleagues and I showed that NtrC directly regulates the expression of the relA gene, the major (p)ppGpp synthetase in E. coli, coupling the nitrogen regulation stress and stringent responses. As elevated levels of (p)ppGpp have been implicated in the formation of persister cells, here, I investigated whether nitrogen starvation promotes their formation and whether the NtrC-RelA regulatory cascade plays a role. The results reveal that nitrogen-starved E. coli synthesizes (p)ppGpp and forms a higher percentage of persister cells than nonstarved cells and that both NtrC and RelA are important for these processes. This study provides novel insights into how the formation of persisters can be promoted in response to a nutritional stress.IMPORTANCE Bacteria often reside in environments where nutrient availability is scarce; therefore, they have evolved adaptive responses to rapidly cope with conditions of feast and famine. Understanding the mechanisms that underpin the regulation of how bacteria cope with this stress is a fundamentally important question in the wider context of understanding the biology of the bacterial cell and bacterial pathogenesis. Two major adaptive mechanisms to cope with starvation are the nitrogen regulation (ntr) stress and stringent responses. Here, I describe how these bacterial stress responses are coordinated under conditions of nitrogen starvation to promote the formation of antibiotic-tolerant persister cells by elevating levels of the secondary messenger (p)ppGpp.


Assuntos
Adaptação Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
20.
Artigo em Inglês | MEDLINE | ID: mdl-30509938

RESUMO

We developed a simple, efficient, and cost-effective method, named the replica plating tolerance isolation system (REPTIS), to detect the antibiotic tolerance potential of a bacterial strain. This method can also be used to quantify the antibiotic-tolerant subpopulation in a susceptible population. Using REPTIS, we isolated ciprofloxacin (CPFX)-tolerant mutants (mutants R2, R3, R5, and R6) carrying a total of 12 mutations in 12 different genes from methicillin-sensitive Staphylococcus aureus (MSSA) strain FDA209P. Each mutant carried multiple mutations, while few strains shared the same mutation. The R2 strain carried a nonsense mutation in the stress-mediating gene, relA Additionally, two strains carried the same point mutation in the leuS gene, encoding leucyl-tRNA synthetase. Furthermore, RNA sequencing of the R strains showed a common upregulation of relA Overall, transcriptome analysis showed downregulation of genes related to translation; carbohydrate, fat, and energy metabolism; nucleotide synthesis; and upregulation of amino acid biosynthesis and transportation genes in R2, R3, and R6, similar to the findings observed for the FDA209P strain treated with mupirocin (MUP0.03). However, R5 showed a unique transcription pattern that differed from that of MUP0.03. REPTIS is a unique and convenient method for quantifying the level of tolerance of a clinical isolate. Genomic and transcriptomic analyses of R strains demonstrated that CPFX tolerance in these S. aureus mutants occurs via at least two distinct mechanisms, one of which is similar to that which occurs with mupirocin treatment.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , GTP Pirofosfoquinase/genética , Perfilação da Expressão Gênica/métodos , Humanos , Leucina-tRNA Ligase/genética , Mupirocina/farmacologia , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...